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EXECUTIVE SUMMARY

This hydrogeologic modeling study has been performed as part of the
regional hydrologic characterization of the Waste Isolation Pilot Plant
(WIPP) in southeastern New Mexico. The study resulted in an estimation of
the transmissivity distribution, hydraulic potentials, flow field, and
fluid densities in the Culebra Dolomite Member of the Permian Rustler
Formation at the WIPP site.

The three-dimensional finite-difference code SWIFT II was employed for the
numerical modeling, using variable-fluld-density and both single- and
double-porosity formulations. The variable-fluid-density approach does
not, at thils stage, include changes in brine density within the model due
to local reaction, such as halite dissolution. The spatial scale of the
model, 12.24 km by 11.70 km, was chosen to allow simulation of a 62-day
pumping test, conducted in fall 1985 at the H-3 hydropad south of the
center of the WIPP site. The modeled area includes and extends beyond the
WIPP controlled zone (Zone 3).

The work performed consisted of modeling the hydrogeology of the Culebra
using two different approaches: (1) steady-state modeling to develop the
best estimate of the undisturbed head and fluid-density distribution,
i.e., of the situation prior to sinking of the WIPP shafts, which began in
1981; and (2) superimposed transient modeling of local hydrologic
responses to excavatlon of the three WIPP shafts at the center of the WIPP
site, as well as to various well tests. Boundary conditions (prescribed
constant fluid pressures and densities) were estimated using hydraulic-
head and fluid-density data obtained from 40 wells at and near the WIPP
site. The transient modeling response in the interior of the model was
superimposed on the steady-state baseline utilizing the same boundary
conditions.
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The initial spatial transmissivity distribution in the Culebra dolomite
was obtained using kriging techniques. The resulting initlial steady-state
model was calibrated agalnst the observed formation pressures and observed
fluid densities. Calibration parameters were the prescribed boundary
conditions and transmissivities.

The resulting spatial transmissivity distribution is characterized by a
high-transmissivity zone extending between the H-11 hydropad (within the
WIPP control zone) and the southern model boundary, which is outside the
control zone. Modeled transmissivities within this 2zone are as great as
2 X IO'Ll m2/s. Inclusion of this high~transmissivity zone 1s necessary in
the model to obtaln the relatively low freshwater heads observed at both
H~11 and DOE-1. The location of the zone 1is constr’ainéd to be east of
hole P-17, because placing it further west, between holes H-4 and P-17,
does not result in satisfactory agreement between observed and calculated
freshwater heads. The final transmissivity distribution is also charac-
terized by a relatively large area of low transmissivities (less than
approximately 10"6 m2/s). This area is malnly near the center of the
site, and includes holes H-1, H-2, WIPP holes 12, 18, 19, 21, and 22,
P-18, and H-5, in addition to the WIPP shafts.

After calibration of the steady-state model against the best estimate of
the undisturbed freshwater heads, the remaining difference between
observed and calculated heads 1s less than 1.1 m for all well locations.
Given the uncertainty assoclated with observed heads, the calibration is
considered satisfactory.

Formation~fluld densities within the modeled area range from 1.00 to
greater than 1.10 g/cm3. Assuming no internal reaction and complete
confinement of the Culebra, it was not possible to calibrate the steady-
state model completely agalinst the observed densities. Although the final
differences between observed and calculated densities are generally less
than 0.01 g/cm3, a difference of about 0.04 g/c:m3 remains at and near well
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P-17, with the measured fluid density exceeding the modeled value. 1In
addition, it was impossible to reproduce fully the north-to-south decrease
in formation-water density observed in the western part of the model
area. In this area, modeled fluid densities exceed those measured. One
reason for these inconsistencies may be that the hydrogeology of the
Culebra 1is influenced by vertical fluxes into or out of the unit, from the
overlying Magenta Member (by way of the intervening Tamarisk Member)
and/or from the underlying unnamed member of the Rustler or Rustler/Salado
contact zone. Another possibility 1is that boundary conditions for the
modeled area are transient on the time scale required for fluid flow.

In order to investigate the possibility of vertical ground-water flow into
the Culebra dolomite, scoping calculations were conducted for two areas:
(1) the viecinity of P-17; and (2) the western portion of the model area
(south of H-6 and west of H-1). Based on these calculations, a high-
density (highly-saline) flux from the Rustler-Salado residuum, through the
unnamed lower member of the Rustler, into the Culebra appears possible at
and near P-17. The order of magnitude of the volumetric flux is estimated
to be about 1.8 x 10712 m/s, or 0.1 1/min, distributed over an area of
1 km®. The simulations at P-17 indlcate that an even smaller flux of
high~density brine can significantly influence the calculated density
distribution. 1In fact, given the estimated vertical head distribution at
P-17, a low hydraulic conductivity of less than 10712 m/s had to be
assigned to the unnamed member of the Rustler to avoid affecting fluid
density within the overlylng Culebra. Alternatively, there may be an
unresolved problem with the well completion at P-17. In the western model
area, a low-density (slightly-saline) flux downward from the Magenta dolo-
mite (via the intervening Tamarisk Member) into the Culebra 1is possible,
consistent with sparse head-potential and brine-density data from the
Magenta. Depending on the transmissivities assumed for the Magenta and
Tamarisk, a vertical flux of 5 x 10712 m/s, or 0.3 1/min per km2, seems to
be possible.
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After final calibration of the steady-state model, the following drilling
and testing activities at the WIPP shafts and well locations were
incorporated into the model and superimposed onto the steady-state head
distribution: (1) a simplified but complete shaft history since 1981;
(2) three pumping tests and a serles of slug tests conducted at the H-2
hydropad in 1982 and 1984; (3) the H-3 convergent-flow tracer test
conducted in 1984; (4) the H-3 step-drawdown test conducted in 1985;
(5) the H-3 multipad pumping test in 1985 and 1986; and (6) the
convergent-flow tracer test at the H-4 pad conducted between 1982 and
1984, The hydraulic situation in the Culebra dolomite was simulated for
the period from January 1, 1981 to December 31, 1986.

The transient simulation generally resulted in good agreement between
model-calculated and observed long-term freshwater-head histories at the
shaft and well locations (e.g., H-1, H-2, H-3, DOE-1, and H-11). This
indicates that the transmissivity distribution 1in this reglon is
realistic. It was not possible, however, to reproduce the short-term
observed transient head responses at the shaft location and nearby wells
(WIPP-21, WIPP-22, and WIPP-19) to the H-3 multipad test without assuming
additional 1leakage from the Culebra dolomite into the waste-handling
shaft, This assumed increase in leakage results in much better agreement
between calculated and observed pressures. Thus, it seems likely that the
observed freshwater heads near the WIPP shafts in fall 1985 and the first
half of 1986 were influenced by two partially concurrent events: (1) the

H-3 multipad pumping test; and (2) additional leakage in the waste-
handling shaft.

A sensitivity analysis using the double-porosity flow conceptualization of
SWIFT I1 was conducted to assess the possible impact of dual-porosity
behavior on model results. For the purpose of regional estimation of the
ground-water flow field and head distribution, the double-porosity
conceptualization does not provide significantly different results from
those obtained using the single-porosity approach.
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The modeling study discussed in this interim report 1s based on the trans-
missivity data available as of April 1986 as well as on the hydraulic-head
data available as of August 1986. The next step of the modeling study
wlll incorporate more recent transmissivity and hydraulic-head data. In
addition, the model area will be enlarged and the model will be calibrated
to the results of a second (northern) multipad pumping test to be
conducted early in 1987. The final results of the latter modeling study
will be available early in 1988.
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1.0  INTRODUCTION

The modeling studies of ground-water flow in the Culebra Dolomite Member of
the Rustler Fommation reported here have been performed as part of the
regional hydrologic characterization studies for the Waste Isolation Pilot
Plant (WIPP) site in southeastern New Mexico (Figure 1.1). The site
characterization studies are being conducted in accordance with the
Consultation and Cooperation Agreement between the U.S. Department of
Energy and the State of New Mexico as part of the evaluation of the
suitability of bedded salt of the Salado Fommation for isolation of defense
transuranic waste. The regional hydrologic characterization studies are

being coordinated by Sandia National Laboratories on behalf of the
Department of Energy.

1.1 Objectives
The objectives of this report are to:

(1M document the hydrogeologic data base for the Culebra dolomite at
' the WIPP site (including Culebra elevations, transmissivities,
fluid densities, freshwater heads, and hydrologic stresses during

the period 1981-1986);

(2) develop a conceptualization and modeling strategy for describing
ground-water flow in the Culebra;

(3) present the calibration approach and results for simulating ground-
water flow in the Culebra under undisturbed hydraulic conditions
and during the transient period (1981 to 1986) resulting from shaft
activities and well tests (in particular, the H-3 multipad pumping
test);
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(W) present the results of sensitivity analyses to assess the impact of
vertical fluxes to the Culebra on the freshwater head and fluid-
density distributions;

(5 present the results of calculations and analyses to assess the
impact of double-porosity flow on the transient behavior of the
simulated hydrogeology in the Culebra dolomite.

The spatial scale for the numerical model utilized in this study was
chosen to allow a quantitative evaluation of the H-3 multipad pumping
test and to allow a preliminary assessment of ground-water flow in the
Culebra at the WIPP site. As such, it encompasses the WIPP site and its
immediate surroundings. The model 1is relatively detailed since it
includes the area containing the majority of the available monitoring and
test wells in this region.

1.2 Previous Modeling Studies of Ground-Water Flow in the Culebra

Dolomite

Various modeling studies of ground-water flow at the WIPP site have been
conducted since 1978, with particular emphasis on the Permian Rustler
Formation. These studies are presented in:

e Final Envirommental Impact Statement (FEIS), U.S. DOE (1980) and
WIPP Safety Analysis Report, U.S. DOE (1981);

e Cole and Bond (1980);

e D'Appolonia (1980);

e Barr et al. (1983).

The approximate areal extent encompassed by these models is illustrated

in Figure 1.2.
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The modeling studies presented in the Final Envirommental Impact State-
ment and the WIPP Safety Analysis Report (SAR) were conducted by INTERA
during the period 1977-1980. The objectives of these studies were to:

(1) check consistency or lack of it between various sets of hydro-
geologic data;

(2) calculate the extent of communication (vertical permeabilities)
between various hydrologic units;

(3) delineate heterogeneities (i.e., spatial variation of permeability)
existing within each geologic fomation;

(4) determine potentials and/or hydraulic conductivities in areas where
data are lacking;

(5) determine boundary conditions for 1local scenario and nuclide-
transport modeling.

The hydrologic data base of the above-mentioned study was obtained
principally from Mercer and Orr (1977) which summarized data existing
through February 1977 and fraom a draft USGS report to Sandia National
Laboratories containing the results of well tests and permeability
estimates at the WIPP site. The hydrogeologic units included in the
modeling studies were the Rustler Formation (conceptualized as a single
hydrologic unit), the shallow-dissolution zone along the Rustler-Salado
interface in Nash Draw, the Delaware Mountain Group, the Capitan Reef,
the Salado Formation, and the Castile Formation.

Cole and Bond (1980) conducted a benchmark check of the modeling studies
conducted by INTERA for the FEIS. Their work was performed on behalf of
the Office of Nuclear Waste Isolation (ONWI). They utilized the same
data and conceptual model, but a different numerical model, for their

assessments. Their model, denoted VTT, is a two-dimensional multilayer
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model which solves the Boussinesque equations for ground-water flow and
allows hydraulic communication between layers. with an interaquifer
transfer coefficient. The results of thelr modeling studies showed a
very close correspondence to results obtained using the INTERA model.

D'Appolonia (1980) conducted modeling studies of the WIPP site with the
objectives of:

(1) verifying the basic calculational procedures implemented by INTERA
in the SAR report for the analyses of breach and transport events;

(2) evaluating the sensitivity of the results to basic hydrogeologic
and geochemlcal parameters and source-term inputs; and

(3) reviewing the data base used to define the input parameters.

In these studies, the Rustler Formation and the Bell Canyon agquifer were
modeled individually with separate model grids and simulations. Overall,
their results and conclusions pertaining to these studies were consistent

with the previously conducted studies.

The model developed by Barr et al. (1983) had the principal objectives
of:

(1) simulating the freshwater potential surfaces for the Magenta and
Culebra dolomites;

(2) estimating rates and extents of migration of ideally nonsorblng
contaminants injected continuously into the Culebra and Magenta
dolamites without disturbing the calculated head distribution.

1-14
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The model area was selected to include the region containing most of the
hydrologic study wells and most of Nash Draw. The Culebra and Magenta
dolomites were modeled separately using an anisotropic two-dimensional
model, TISOQUAD. The hydrogeologic data base consisted primarily of
Mercer (1983) and Gonzalez (1983 a,b). Results of this study indicated
slower ground—watér movement than calculated in previous studies.

1.3 Present Approach to Modeling of Ground-Water Flow in the Culebra
Dolomite

The modeling studies of the Culebra presented in this report deal
specifically with a spatial scale suitable for interpreting the H-3
multipad pumping test and a transient period encompassing the period from
the excavation of the first shaft at the WIPP site in mid-1981 until late
1986. The model-grid area is illustrated in Figure 1.2. The model
boundaries were chosen at distances sufficiently far from the H-3

hydropad so as not to be within the region affected by the pumping at the
H-3 hydropad.

The modeling methodology consisted of the following steps:

(1) developing and documenting the hydrogeologic data base (i.e.,
Culebra thicknesses and elevations, transmissivities, equivalent
freshwater heads, fluid densities, and hydrologic impacts of the
shafts and well-testing activities);

(2) employing kriging techniques to analyze the transmissivity data
base and to estimate the initial transmissivity distribution of the
model . Kriging techniques were further used during the calibration
process in order to maintain statistical consistency between the
measured transmissivity data of the Culebra and the transmis-
sivities implemented in the model;
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(3) simulating steady-state flow under undisturbed hydrologic
conditions (i.e., prior to installation of the first shaft). This
simulation was conducted in two stages: (a) calibration of the
model for the estimated freshwater-head distribution only, and
(b) calibration of the model for both the freshwater-head
distribution and the fluid-density distribution;

(4) simulating the transient response in the Culebra, during the period
1981 to 1986, resulting from the excavation and sealing activities
of the WIPP shafts and the major hydraulic- and tracer-testing
activities of the regional hydrologic characterization program.
The transient model utilizes the pressures and brine concentrations
of the density-calibrated steady-state model as initial conditions.
The transient events are implemented and the calculated and
observed freshwater heads are compared for selected wells;

(5) conducting a 1limited sensitivity analysis of the effects of
vertical fluxes to the Culebra and the impact of double-porosity
flow on the transient model simulations.

This study is an interim step toward a more comprehensive modeling study
characterizing the regional hydrogeology of the Rustler Formation at the
WIPP site. The next step in the modeling study, which will incorporate
results of both testing of individual holes through 1987 and of a second
(northern) multipad pumping test to be fielded early in 1987, will be
completed in early 1988.
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2.0  SITE CHARACTERIZATION

2.1 General

The WIPP site lies within the geologic region known as the Delaware
Basin and more specifically within the geographic region known as
Los Medarios. Both the Delaware Basin and Los Medafios region occur
within the southern section of the Pecos River portion of the Great
Plains Physiograpnic Province. Los Medafios is a region of gently
sloping terrain which rises eastward from the Pecos River to the western
caprock of the Llano Estacado, located approximately 40 km to the
northeast of the WIPP site (Mercer, 1983).

2.2 Stratigraphy

The following stratigraphic summary is limited to a discussion of those
sedimentary units which crop out in and around the WIPP site. These
formations range in age from Permian to Quaternary as shown in the
geologic column illustrated in Figure 2.1. The Delaware Mountain Group
represents the Permian Guadalupian Series and is composed of a series of
fine-grained clastic rocks. In the WIPP area, the Delaware Mountain
Group consists of the Brushy Canyon, the Cherry Canyon, and the Bell
Canyon Formations. The Bell Canyon consists of interbeded sandstone and
shale which represents the fore-reef facies of a massive Permian reef -
known as the Capitan Limestone. The Ochoan Series rocks overlie the
Guadalupian Series and contain a thick evaporitic sequence which accumu-
lated in the Delaware Basin during Permian time. The Castile Fommation
is the basal formation of the Ochoan Series and is composed principally
of anhydrite and halite with some carbonates and sandstones. Overlying
the Castile is the Salado Formation, which is composed of thick beds of
halite interbedded with anhydrite, polyhalite, dolomite, and clay. More
complete descriptions of the Salado Formation are found in Jones (1973,
1975). Overlying the Salado Formation is the Rustler Formation, which
is the most water-transmissive formation in the area (Mercer, 1983).

2-1
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The Rustler Formation has been divided into five separate members ba